

1.Introduction to Strings

® Sequence of character is known as Strings.
® A string is a null-terminated character array.

® This means that after the last character, a null character
(‘\0’) is stored to signify the end of the character array.

® Forexample: charc[] = "cstring";

C 5 | % rling\O

When the compiler encounters a sequence of characters
enclosed in the double quotation marks, it appends a
null character \o at the end by default.

~— How to declare a string?

® Here's how you can declare strings:
char str(size];
char s|5];

s[O] s[(1] s[2] s[3] s[4]

|

® Here, we have declared a string of 5 characters.

® A string can be declared as a character array or with a
string pointer.

~— How to initialize strings?

® You can initialize strings in a number of ways.

char c[] = "abed";
charc[s] ={'a',’b','c’,'d",'\o'};
char *c="abcd"; c0] <11 <21 c[31 c[4]
« [] @]
® Let's take another example: ’ ' '
® charc[s] = "abcde’;

® Here, we are trying to assign 6 characters (the last
character is'\0') to a char array having 5 characters.

® This is bad and you should never do this.

P

Assigning Values to Strings

® Arrays and strings are second-class citizens in C; they
do not support the assignment operator once it is
declared.

® For example,
char c[100];

c = "C programming’; // Error! array type is not
assignable.

® Note: Use the strcpy() function to copy the string
instead

—

= e . °
Difference between character storage and string storage

char str[] = "HELLO"; char ch="H';

HIE|LIL[O[\O Here H is a character not a string.

The character H requires
Beginning only one memory location.
f stri
of string T

char str[] = "H"; char str[] ="";
Here H is a string not a character. The PRE
string H requires two memory locations. One
to store the character H and another to store | Although C permits empty string,
the null character. it does not allow an empty character.

P

—

* For example if we write,

char str[] = "HELLO";

We are declaring a character array with 5 characters namely, H, E, L, Land O.
Besides, a null character (\0') is stored at the end of the string. So, the internal
representation of the string becomes- HELLO'\(0". Note that to store a string of length 5, we
need 5 + 1 locations (1 extra for the null character).

The name of the character array (or the string) is a pointer to the beginning of

the string. str[0] 1000 =
str[1] 1001 =
str[2] 1002 L
str[3] 1003 L
str[4] 1004 (&)
str[5] 1005 \O
Memory representation

of a character array

P R

We can also declare a string with size much larger than the number of elements that
are initialized.

For example, consider the statement below.

char str [10] = "HELLO"

In such cases, the compiler creates an array of size 10; stores "HELLO" in it and
finally terminates the string with a null character. Rest of the elements in the array
are automatically initialized to NULL.

Now consider the following statements:

char str{3]; str = "HELLO";

The above initialization statement is illegal in C and would generate a compile-time
error because of two reasons. First, the array is initialized with more elements than it
can store. Second, initialization cannot be separated from declaration.

Note: When allocating memory space for a string, reserve space to hold the
null character also.

/L ry to print above men

#include <stdio.h>

#include <conio.h>

int main()

{

char str[10]={'HE'/L'/L'/O',"\o'};
printf("Greeting string message : %s", str);

return o;
} Greeting string message : HELLO

.. .Program finished with exit code

Press ENTER to exit console.D

Note: %s is used to print the string in C

~——2.Reading and Writing a string

® READING STRINGS
If we declare a string by writing
char str[100];
Then str can be read from the user by using three ways
® use scanf function
® using gets() function

® using getchar(), getch()or getche() function
repeatedly

The string can be read using scanf() by writing
scanf("%s", str);

Although the syntax of using scanf() function 1s well known and
casy to use, the main pitfall of using this function 1s that the
function terminates as soon as it finds a blank space
(white space, newline, tab, etc.)..

For example, 1f the user enters Hello World, then the str will
contain only Hello. This 1s because the moment a blank space
is encountered, the string 1s terminated by the scanf() function.

You may also specify a field width to indicate the maximum
number of characters that can be read. Remember that extra
characters are left unconsumed in the input buffer.

® Unlike int, float, and char values,

%s format does not require the ampersand(&) before
the variable str.

® Note: Using & operand with a string variable in the
scanf statement generates an error.

scanf("%s", &str);

~— The string can be read by writing

gets(str);
gets() is a simple function that overcomes the
drawbacks of the scanf() function.

gets() takes the starting address of the string which will
hold the input.

The string inputted using gets() is automatically
terminated with a null character.

Note: that in this method, you have to deliberately
append the string with a null character. The other
two functions automatically do this

~ The string can also be read by calling the getchar()

repeatedly to read a sequence of single characters
(unless a terminating character is entered) and
simultaneously storing it in a character array.

1=0;

getchar(ch);

while(ch!=""")

{ str[i] = ch;
1++;
getchar(ch);

} strli] ="\o

= © WRITING STRINGS

The string can be displayed on screen using three ways

® use printf() function
® using puts() function
® using putchar()function repeatedly

P—
The string can be displayed using printf() by writing

printf("%s", str);

We use the format specifier %s to output a string. Observe carefully that
there is no'&’ character used with the strm%varlable. We may also use
width and precision specifications along with %s. The width specifies the
minimum output field width. If the string is short, the extra space is either
left padded or right padded. A negative width left pads short string rather
than the default right justification. The precision specifies the maximum
number of characters to be displayed, after which the string is truncated.
For example,

printf ("%5.3s", str);

The above statement would print only the first three characters in a total
field of five characters. Also these characters would be right justified in the
allocated width. To make the string left justified, we must use a minus
sign. For example,

printf ("%-5.3s", str);

P

® The string can be displayed by writing
puts(str);

® puts() is a simple function that overcomes the
drawbacks of the printf() function.

® Note: When the field width is less than the length of
the string, the entire string will be printed, if the
number of characters to be printed is specified as zero,
then nothing is printed on the screen.

P

The string can also be written by calling the
putchar() repeatedly to print a sequence of single

characters
1=0;
while(str[i] '="\o*)
{
putchar(str[i]);
1++;

J

e Reading A Line Of Text

gets() and puts() are two string functions to take string input
from user and display string respectively

int main()

{

char name|30];

printf("Enter name: ");

gets(name); //Function to read string from user.
printf("Name: ");

puts(name); //Function to display string.

return o;

)

Note: Though, gets() and puts() function handle strings,
]ﬁ(l)th these functions are defined in "stdio.h" header
e.

P

SUPPRESSING INPUT

® scanf() can be used to read a field without assigning it
to any variable. This is done by preceding that field's
format code with a

For example, given:
scanf("%d*c%d", &hr, &min);
® The time can be read as 9:05 as a pair.

® Here the colon would be read but not assigned to
anything.

® Usinga
©® The ANSI standard added the new scanset feature to the C language.

® A scanset is used to define a set of characters which may be read and
assigned to the corresponding string.

® A scanset is defined by placing the characters inside square brackets
prefixed with a %

intmain()

{

charstr[10];

printf("\nEnter string:");
scanf("%[aeiou]",str);
printf("The string is : %s",str);
Return o;

}

® The code will stop accepting character as soon as the user will enter a
character that is not a vowel.

® However, if the first character in the set is a ” (caret symbol), then scanf()
will accept any character that is not defined by the scanset.

® For example, if you write
scanf("%|"aeiou]",str);

~3.String operatm\sEn

(without using built-in string functions)

®In this section, we will learn about different operations
that can be performed on strings without using built in
functions which includes :

i) Length vi) Substring
ii) Compare vii) Insertion
iii) Concatenate viii) Indexing
iv) Copy ix) Deletion

v) Reverse x) Replacement

Length - Finding Length of a String

® The number of characters in the string constitutes the length of the string.
® For example, LENGTH(“C PROGRAMMING IS FUN”) will return 2o0.

® LENGTH(‘0’) = 0 and LENGTH(") = o because both the strings does not
contain any character.

Algorithm to calculate the length of a string

Step
Step
Step

Step
Step

1
-
3 ™

4 :
-

[INITIALIZE] SET I = O

Repeat Step 3 while STR[I] != NULL
SET I = I + 1

[END OF LOOP]

SET LENGTH = I

END

I iS usca ds 4dll 11aex 10r traversing siuring Si I,
To traverse each and every character of STR, we increment the value of .

Once we encounter the null character, the control jumps out of the while loop
and the length is initialized with the value of I.

Writea program to find the length of a's
/

#include <stdio.h>

#include <conio.h>

int main()

{

char str[100], i= o, length=o0;

printf("\n Enter the string : ");

gets(str);

/*while(str[i] = "\o') // using while loop

1++;

length = i;*/

for (i=o;str[i]!="\0";i++)

length = length+1;

printf("\n The length of the string is : %d", length); OUTPUT

return o;

}

Enter the string : hellow

The length of the string is : 6

ompare

If S1and S2 are two strings, then comparing the two strings will give either of the
following results:

S1and Sz are equal
S1>S2, when in dictionary order, S1 will come after S2
S1<S2, when in dictionary order, S1 precedes Sz

To compare the two strings, each and every character is compared from both the
strings.

If all the characters are the same, then the two strings are said to be equal.

In this algorithm, we first check whether the two strings are of the same length.
If not, then there is no point in moving ahead, as it straight away means that the
two strings are not the same.

However, if the two strings are of the same length, then we compare character by
character to check if all the characters are same.

If yes, then the variable SAME is set to 1. Else, if SAME = o, then we check which
string precedes the other in the dictionary order and print the corresponding
message.

Mm

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:

[INITIALIZE] SET I=0, SAME =0
SET LEN1 = Length(STR1l), LEN2 = Length(STR2)
IF LEN1 != LEN2
Write "Strings Are Not Equal™
ELSE
Repeat while I<LEN1
IF STR1[I] == STR2[I]
SET I =1I + 1
ELSE
Go to Step 4
[END OF IF]
[END OF LOOP]
IF I = LENI1
SET SAME =1
Write "Strings are Equal”
[END OF IF]
IF SAME = O,
IF STR1[I] > STR2[I]
Write "Stringl is greater than String2”
ELSE IF STR1[I] < STR2[I]
Write "String2 is greater than Stringl”
[END OF IF]
[END OF IF]
EXIT

Write a program to compare tw

e <stdio.h>
#include <conio.h>
#include <string.h>
intmain()
{
char stri[50], str2[50];
int i=o0, len1=0, len2=0, same=o0;
clrscr();
printf("\n Enter the first string : ");
gets(stri);
printf("\n Enter the second string :);
gets(str2);
len1 = strlen(str1);
len2 = strlen(str2);
if(len1 == len2)
{
while(i<len1)
{
if(str1[i] == str2[i])

1++;

else
break;
}
if(i==lem)

{

same=1;

printf("\n The two strings are equal");

1}

if(len1'=len2)

printf("\n The two strings are not equal");
if(same == 0){

if(str1[i]>str2[i])

printf("\n String 1 is greater than string 2");
else if(stri[i]<strz[i])

printf("\n String 2 is greater than string 1");

}

getch(); OUTPUT:
return o; Enter the first string : Hello
} Enter the second string : Hello

The two strings are equal

oncatenate

® CONCATENATING TWO STRINGS TO FORM A NEW STRING

® IF S1and Sz are two strings, then concatenation operation produces a string
which contains characters of S1 followed by the characters of S2.

ALGORITHR{ TO COWCATERATE TWO STRINGS

1. Imatialige [=0 ard J=0
Z. Bepeat step 3 to 4 while | <= LENGTH({strl)

3 GET W StT [¥] = strl[]]
4 Get [=[+]l ard J=d+1
[END of stepl]
5. 3ET [=0
6 Repeat ctep 6 to 7 while [<= LENGTH (str2)
T SET W Str [¥] = strl[I]
E Sat [=[+] ard J=0+1
[EHD of steph]

9. EET nﬂl_str[i]] = "\
10. EXIT

s

— PROGRAM: OUTPUT

#include <stdio.h>
intmain()

{

inti,j=o,len=o; Enter the stringl : DEnnIS
char stri[100], str2[100];

Enter the string2 : Ritchie

printf("\nEnterthe string1 : ");

gets(str); The concatenated string is DEnnISRitchie
printf("Enter the string2 : ");

gets(str2);

for (i=o;str1[i]!="\o';i++)

len=len+1; // length of the first string

j=len;

for (i=o;str2[i]!'="\o";i++){

str1[j]=str2[i]; // 2nd string copied to 1st string //from jthposition
j=+1;}

str1[j]="\o’;

printf("The concatenated string is %s",str1);

}

concatenate or append have same implementation in C

® Appending one string to another string involves copying the contents
of the source string at the end of the destination string.

® algorithm that appends two strings

Step 1: [INITIALIZE] SET I=0 and J=0
Step 2: Repeat Step 3 while DEST_STR[I] != NULL
Step 3: SET I =I+1
[END OF LOOP]
Step 4: Repeat Steps 5 to 7 while SOURCE STR[J] != NULL

Step 5: DEST STR[I] = SOURCE STR[]]
Step 6: SET I =I+1
Step 7: SET 1 =1 + 1

[END OF LOOP]
Step B8: SET DEST STR[I] = NULL
Step 9: EXIT

Write a progr
i <stdio.h>
#include <conio.h>

int main()

{

char Dest_Str[100], Source_Str[50];
inti=o, j=0;

printf("\n Enter the source string : ");
gets(Source_Str);

printf("\n Enter the destination string :

gets(Dest_Str);

while(Dest_Str[i] = "\o')

1++;

while(Source_Str[j] !="\o')

{ Dest_Str[i] = Source_Str[j];
1++;
J++;

}

Dest_Str[i] ="\o’;

string to another

OUTPUT

Enter the source string : How are you?
Enter the destination string : Hello,

After appending, the destination string is :
Hello,How are you?

printf("\n After appending, the destination string is : "); puts(Dest_Str);

return o;

}

e

Copying the contents of one string to another string.

iv) Copy

#include <stdio.h>
int main()

{ OUTPUT
int i;

char stri[100], str2[100]; Exter Lhe stoingl :

The copied string is madam

printf("\n Enter the string1 : ");

getS(StH); .« -Program finished with exit code
for (i=o;stri[i]!'="\o";i++) Press ENTER to exit console.[]

strz2[i]=stri|i];

str2[i]="\o";

printf("The copied string is %s",str2);
return o;

}

v) Reverse

® IfS1="HELLO", then reverse of S1 = "OLLEH".

® To reverse a string, we just need to swap the first character with the
last, second character with the second last character, and so on.

Algorithm

Step 1: [INITIALIZE] SET I=0, J= Length(STR)-1
Step 2: Repeat Steps 3 and 4 while I <]
Step 3: SWAP(STR(I)}, STR(J))
Step 4: SET I =I + 1, 1 =1 -1
[END OF LOOP]
Step 5: EXIT

WWg. —

/

#include <stdio.h>

intmain()

{

int i, j=o0,len=0;

char stri[100], rev[100]; OUTPUT

printf("\nEnterthe string : ");

gets(str1);
for (i=o;stri[i]!="\o';i++) nter the stringl : Dennis
len=len+i; he reversed string is sinneD

for (i=len-1;i>=0;i--)

{ . . Program finished with exit code
rev(j]=stri[i]; ress ENTER to exit console.|Jj

j=+1;

}

rev[j]="\o’;

printf("The reversed string is %s",rev);
return o;

}

_—Vi) Substring g

To extract a substring from a given string, we need the following
three parameters:

®the main string,

®the position of the first character of the substring in the given
string, and

®the maximum number of characters/length of the substring.

For example, if we have a string

Ostr[] = "Welcome to the world of programming";
®Then, SUBSTRING(str, 15, 5) = world

orithm é

® we initialize a loop counter I to M, that is, the position from which the
characters have to be copied.

Steps 3 to 6 are repeated until N characters have been copied.

With every character copied, we decrement the value of N.

The characters of the string are copied into another string called the

SUBSTR.

At the end, a null character is appended to SUBSTR to terminate the

string.

Step
Step

Step
Step
Step
Step

Step
Step

M

s RV I R VY

00 =

[INITIALIZE] Set I=M, 3J=0
Repeat Steps 3 to 6
while STR[I] != NULL and N>0O
SET SUBSTR[J] = STR[I]
SET I =I + 1
SET 1 =1 + 1
SET N=N-1
[END OF LOOP]
SET SUBSTR[J] = NULL
EXIT

bstring from the mi

Write a progra

#include <conio.h>
intmain()

{

char str[100], substr[100];

inti=0, j=0, n, m;

printf("\n Enter the main string : ");

gets(str);

printf("\n Enter the position from which to start the substring: ");
scanf("%d", &m);

printf("\n Enter the length of the substring: "); OUTPUT
scanf("%d", &n);
1=m,;

. : Enter the main string : Hi there
while(str[1] !="\0' && n>0)

Enter the position from which to start the
{ substring: 1

substr[j] = str[i]; Enter the length of the substring: 4

i}++; e The substring is : i th

substr[j] ="0';

printf("\n The substring is : "); puts(substr);

return O;

j

Indexing —program
Pattern Matching

® This operation returns the position in the string where the
string pattern first occurs.

For example,

©® INDEX("Welcome to the world of programming", "world") = 15
® However, if the pattern does not exist in the string,
the INDEX function returns o.

P

Algorhm t find the ndex of the first occurrence of & String Within a qven tex

Step 1: [INITIALIZE] SET I=0 and MAX = Length(TEXT)-Length(STR)+1
Step 2: Repeat Steps 3 to 6 while I ¢ MAX
Step 3: Repeat Step 4 for K = 0 To Length(STR)
Step 4: IF STR[K] != TEXT[I + K], then Goto step 6
[END OF INNER LOOP]

Step 5: SET INDEX = I. Goto Step 8
Step 6: SET I = I+l

[END OF OQUTER LOOP]
Step 7: SET INDEX = -1
Step 8: EXIT

MAX is initialized to length(TEXT) -Length(STR) + 1.

For example, if a text contains "Welcome To Programming' and the string
contains 'World', in the main text, we will look for at the most 22 -5 + 1 =18
characters because after that there is no scope left for the string to be present in
the text.

Steps 3 to 6 are repeated until each and every character of the text has been
checked for the occurrence of the string within it. In the inner loop in Step 3,
we check the n characters of string with the n characters of text to find if the
characters are same.

If it is not the case, then we move to Step 6, where I is incremented. If the
string is found, then the index is initialized with I, else it is set to -1.

For example, if TEXT = WELCOME TO THE WORLD

STRING = COME

In the first pass of the inner loop, we will compare COME with WELC character
by character. As W and C do not match, the control will move to Step 6 and
then ELCO will be compared with COME. In the fourth pass, COME will be
compared with COME.

We will be using the programming code of pattern matching operation in the
operations that follow.

viii) Insertion

® The insertion operation inserts a string S in the main text T at the

kth position.

® The general syntax of this operation is INSERT(text, position, string).
® For example, INSERT("XYZXYZ", 3, "AAA") = "XYZAAAXYZ*

© Algorithm

first initializes the indices into the
string to zero.

From Steps 3 to 5, the contents of
NEW _STR are built.

If | is exactly equal to the position
at which the substring has to be
inserted, then the inner loop copies
the contents of the substring into
NEW_STR.

Otherwise, the contents of the text
are copied into it.

Step 1:
Step 2:
Step 3:

Step 4:

Step 5:
Step 6:

[INITIALIZE] SET I=0, J=0 and K=0
Repeat Steps 3 to 4 while TEXT[I] != NULL
IF I = pos
Repeat while Str[K] != NULL
new str[J] = Str[K]
SET J=J+1
SET K = K+1
[END OF INNER LOOP]
ELSE
new str[]] = TEXT[I]
set J = J+1
[END OF IF]
set I = I+l
[END OF QUTER LOOP]
SET new str[J] = NULL
EXIT

#include <stdio.h>
intmain() {

a program to insert a string in

else

{

ins_text[j] = text[i];

char text[100], str[20], ins_text[100]; J++;

inti=o, j=0, k=0,pos; }

printf("\n Enter the main text : "); 1++;

gets(text); }

printf("\n Enter the string to be inserted : "); ins_text[j] = "\o’;

gets(str); printf("\n The new string is : ");

printf("\n Enter the place at which the string has to puts(ins_text);

be inserted: ");
scanf("%d", &pos);
while(text[i] != "\o’)
{

if(i==pos){
while(str[k] != "\o){
ins_text[j] = str(k];
J++;

k++;

1}

return o;

}
OUTPUT

Enter the main text : newsman

Enter the string to be inserted : paper

Enter the place at which the string has to be
inserted: 4

The new string is: newspaperman

eletion

Deleting a Substring from the Main String

The deletion operation deletes a substring from a given text.
We can write it as DELETE(text, position, length)
For example, DELETE("ABCDXXXABCD", 4, 3) = "ABCDABCD”

Algorithm:

we first initialize the indices to zero.

Steps 3 to 6 are repeated until all the
characters of the text are scanned.

If | is exactly equal to M (the position from
which deletion has to be done), then the
index of the text is incremented and N is
decremented.

N is the number of characters that have to
be deleted starting from position M.
However, if | is not equal to M, then the
characters of the text are simply copied into
the NEW_STR.

Step
Step
Step

Step
Step
Step

Step
Step

(Y

: [INITIALIZE] SET I=0 and J=0
: Repeat Steps 3 to 6 while TEXT[I] != NULL

IF I=M
Repeat while N>0
SET I = I+1
SETN=N-1
[END OF INNER LOOP]
[END OF IF]

: SET NEW STR[J] = TEXT[I]
D SET I =13 +1
tSETI=1+1

[END OF QUTER LOOP]

: SET NEW _STR[J] = NULL
: EXIT

Write a program to delete a subsM

intmain() {

char text[200], str[20], new_text[200];

int i=o, j=0, found=o, k, n=0, copy_loop=o0;
printf("\n Enter the main text : ");
gets(text);

printf("\n Enter the string to be deleted : ");
gets(str);

while(text[i]!="\0){

j=0, found=o0, k=i;

if(str[j]=="\0")

copy_loop=k;

new_text[n| = text[copy_loop];
1++;

copy_loop++;

N++;

}

new_text[n]="\o';

printf("\n The new string is : ");
puts(new_text);

while(text[k]==str[j] && str[j]!="\0") getch();

{ return o;}
k++; }

J++;

Enter the string to be deleted =

The new String is

hello—

- -Program finished with exit code O

Press ENTER to exit console .||

X) Replacement

Replacing a Pattern with Another Pattern in a String

The replacement operation is used to replace the pattern P1 by another
pattern P2 .

This is done by writing REPLACE(text, pattern , pattern).
For example,
("AAABBBCCC", "BBB", "X") = AAAXCCC

("AAABBBCCC", "X", "YYY")= AAABBBCC

In the second example, there is no change as X does not appear in the text.

® The algorithm is very simple, where

® we first find the position POS, at which the pattern occurs in the text,
then delete the existing pattern from that position and

® insert a new pattern there.

Algorithm to replace a pattern p_ with another
pattern p_ in the text

Step 1: [INITIALIZE] SET POS = INDEX(TEXT, P,)
Step 2: SET TEXT = DELETE(TEXT, POS, LENGTH(P,))
Step 3: INSERT(TEXT, POS, P.)

Step 4: EXIT

/V\Lr' a program to replace a pattern with ano ern in the text.

new_str[n] = str[copy_loop];

#include <stdio.h> :
intmain() { ek

char str[200], pat[20], new_str[200], rep_pat[100]; copy_loop++;

inti=o, j=0, k, n=0, copy_loop=0, rep_index=0; n++;}
printf("\n Enter the string : "); new_str[n]="\o;
gets(str); printf("\n The new string is : ");

printf("\n Enter the pattern to be replaced: ");

gets(pat);
printf("\n Enter the replacing pattern: ");

puts(new_str);
return o;

gets(rep_pat); }
while(str[i]!="\0"){

jo k=i OUTPUT
while(str[k]==pat[j] && pat[j]!="\o'){

k++;

Enter the string : how ARE u?

j++;}
if(pat[jl=="\o'){ Enter the pattern to be replaced:
copy_loop=k;

while(rep_pat[rep_index] !="\o'){

Enter the replacing pattern: are
new_str[n] = rep_pat[rep_index];
rep_index++; The new string is : how are u?
n++;

1}

——String operat@i

(using built-in string functions)

®In this section, we will learn about different operations that
can be performed on strings using built in functions.

©C provides string manipulating functions in the
"string.h" library.

®String in C - Library Functions

Function

strlen

striwr

strupr

strrev

strtok

strcpy

Strncpy

strcat

Strncat

Purpose

Returns the number of
characters in a string

Converts string to all
lowercase

Converts s to all
uppercase

Reverses all characters
in s1 (except for the terminating
null)

Breaks a string into
tokens by delimiters.

Makes a copy of a string
Copy the specified
number of characters

Appends a string to the
end of another string

Appends a string to the
end of another string up to n
characters

Example

strien("Hi") returns 2.

striwr("Hi") returns hi.

strupr("Hi");

strrev(s1, "more");

strtok("Hi, Chao", " ,");

strcpy(s1, "Hi");

strncpy(s1, "SVN",2);

strcat(s1, "more");

strncat(s1, "more",2);

Function

strcmp

Strncmp

Stricmp

strchr()

strrchr()

strstr()

strset()

strnset()

Purpose

Compare two strings
alphabetically

Compare two string upto
given n character

Compare two strings
alphabetically without case
sensitivity.

Find first occurrence of a given
character in the string

Find the last occurrence of a given
character in the string

Finds the first occurrence of a given
string in another string

sets all characters of a string to a given
character

Sets first character of a string to a
given character

Example

stremp(s1, "Hu");

strncmp("mo”, "more"”,2);

Stricmp("hl_j“, "Hu");

strchr(stril,c);
Where c is the character
variable

strrchr(strl,c)

strstrstrl,str2);
Where str2 is the string to
be searched in strl

strset(strl,c);

Strnset(strl,c,n)

ngth —reverse —upper Case ower Case

Length of the string

®The number of characters in the string constitutes the length of the string.
For example, LENGTH("C PROGRAMMING IS FUN") will return 20.

®Note that even blank spaces are counted as characters in the string. LENGTH(‘0’
= 0 and LENGTH(”) = o because both the strings does not contain any character.

®strlen() function in C gives the length of the given string.
®Syntax
size_t strlen(const char * str);

®strlen() function counts the number of characters in a given string and returns the
integer value.

®Its tops counting the character when null character is found. Because, null
character indicates the end of the string in C.

eversing a String

@ If S1 = "HELLO", then reverse of S1 = "OLLEH".

®To reverse a string, we just need to swap the first character with the last,
second character with the second last character, and so on.

®strrev() function reverses a given string in C language.

Syntax
char *strrev(char*string);

@strrev() function is non-standard function which may not available in
standard library inC.

pper Case of a String
strupr() function converts a given string into uppercase.
Syntax
char *strupr(char*string);

strupr() function is non-standard function which may not available in
standard library in C.

Lower Case of a String
strlwr() function converts a given string into lowercase.
Syntax
char *strlwr(char*string);

strlwr() function is non-standard function which may not available in
standard library in C.

trlen(), strupr() , strlwr() , strrev()
#include<stdio.h>
#include<string.h> //c header file for string library functions
void main(){

char stri[10]="DeNnis" , str2[10]="RitChiE";

int len;

len=strlen(str1);

//strupr(str1);

/[strlwr(str2);

printf("\n Length of string is %d", len);

//printf("\n upper case is %s" , str1);

//printf("\n lower case is %s" ,str2);

strrev(stri);

printf("\n Reverse of string is %s", str1);

}

OUTPUT:

Length of string is 6

Reverse of string is sinNeD

.ARRAY OF STRINGS

Till now we have seen that a string is an array of characters. For
example, if we say char name[] = "Mohan", then the name is a
string (character array) that has five characters.

Now, suppose that there are 5 students in a class and we need a
string that stores the names of all the 5 students. How can this be
done? Here, we need a string of strings or an array of strings.

#t Sulch an array of strings would store 5 individual strings. An array of
strings is declared as char names[5][10];

€ Here, the first index will specify how many strings are needed and
the second index will specify the length of every individual string.
So here, we will allocate space for 5 names where each name can
be a maximum 10 characters long.

% Let us see the memory representation of an array of strings. If we
have an array declared as

char name[5][10] = {"Ram", "Mohan", "Shyam", "Hari", "Gopal"};

Then in the memory, the array will be stored as shown in Fig.

P

Memory representation of a 20 character array

name[0] | R | A | M ["\0f

name[1] | M | 0 | H | A | N |"\0f
name[2]) | S | H | Y | A | M |"\0f
name[3] | H | A | R | I |"\0f
name[4] | G | O | P | A | L |"\0f

® Algorithm
® In Step 1, we initialize the index variable I to zero.

® In Step 2, a while loop is executed until all the strings in
the array are accessed.

® In Step 3, each individual string is processed.

Step 1: [INITIALIZE] SET I=0

Step 2: Repeat Step 3 while I< N

Step 3: Apply Process to NAMES[I]
[END OF LOOP]

Step 4: EXIT

ROGRAM TO READ AND PRINT THE NAM
#include<stdio.h>

#include<conio.h>

main()

{

char names|[s][10];

inti, n;

clrscr();

printf(“\n Enter the number of students : “);
scanf(“%d”, &n);

for(i=o;i<n;i++)

{

printf(“\n Enter the name of %dthstudent : “ i+1);
gets(namesli]);

}

printf(“\n Names of the students are : \n”);
for(i=o;i<n;i++)

puts(namesli]);

getch();

return o;

}

