
STRINGS

1.Introduction to Strings
⚫ Sequence of character is known as Strings.
⚫ A string is a null-terminated character array.
⚫ This means that after the last character, a null character

(‘\0’) is stored to signify the end of the character array.
⚫ For example: char c[] = "c string";

 When the compiler encounters a sequence of characters

enclosed in the double quotation marks, it appends a
null character \0 at the end by default.

How to declare a string?
⚫ Here's how you can declare strings:
 char str[size];
 char s[5];

⚫ Here, we have declared a string of 5 characters.
⚫ A string can be declared as a character array or with a

string pointer.

How to initialize strings?
⚫ You can initialize strings in a number of ways.
 char c[] = "abcd";
 char c[5] = {'a','b','c','d','\0'};
 char *c="abcd";

⚫ Let's take another example:
⚫ char c[5] = "abcde";
⚫ Here, we are trying to assign 6 characters (the last

character is'\0') to a char array having 5 characters.
⚫ This is bad and you should never do this.

Assigning Values to Strings

⚫ Arrays and strings are second-class citizens in C; they
do not support the assignment operator once it is
declared.

⚫ For example,
 char c[100];
 c = "C programming"; // Error! array type is not

 assignable.

⚫ Note: Use the strcpy() function to copy the string
instead

Let us try to print above mentioned string:
#include <stdio.h>
#include <conio.h>
int main()
{
char str[10]={'H',’E',‘L',‘L',‘O','\0'};
printf("Greeting string message : %s", str);
return 0;
}

Note: %s is used to print the string in C

2.Reading and Writing a string
⚫ READING STRINGS

 If we declare a string by writing
 char str[100];
 Then str can be read from the user by using three ways
⚫ use scanf function
⚫ using gets() function
⚫ using getchar(), getch()or getche() function

repeatedly

⚫ The string can be read using scanf() by writing
 scanf("%s", str);

Although the syntax of using scanf() function is well known and

easy to use, the main pitfall of using this function is that the
function terminates as soon as it finds a blank space
(white space, newline, tab, etc.)..

For example, if the user enters Hello World, then the str will
contain only Hello. This is because the moment a blank space
is encountered, the string is terminated by the scanf() function.

You may also specify a field width to indicate the maximum
number of characters that can be read. Remember that extra
characters are left unconsumed in the input buffer.

⚫ Unlike int, float, and char values,

%s format does not require the ampersand(&) before
the variable str.

⚫ Note: Using & operand with a string variable in the
scanf statement generates an error.

 scanf("%s", &str);

 The string can be read by writing
 gets(str);
⚫ gets() is a simple function that overcomes the

drawbacks of the scanf() function.
⚫ gets() takes the starting address of the string which will

hold the input.
⚫ The string inputted using gets() is automatically

terminated with a null character.

⚫ Note: that in this method, you have to deliberately
append the string with a null character. The other
two functions automatically do this

 The string can also be read by calling the getchar()
repeatedly to read a sequence of single characters
(unless a terminating character is entered) and
simultaneously storing it in a character array.

i=0;
getchar(ch);
while(ch!='*’)
{ str[i] = ch;
 i++;
 getchar(ch);
} str[i] ='\0

⚫ WRITING STRINGS

The string can be displayed on screen using three ways

⚫ use printf() function
⚫ using puts() function
⚫ using putchar()function repeatedly

⚫ The string can be displayed by writing
 puts(str);
⚫ puts() is a simple function that overcomes the

drawbacks of the printf() function.

⚫ Note: When the field width is less than the length of
the string, the entire string will be printed, if the
number of characters to be printed is specified as zero,
then nothing is printed on the screen.

 The string can also be written by calling the
 putchar() repeatedly to print a sequence of single

characters

i=0;
while(str[i] !='\0*)
{
putchar(str[i]);
i++;
}

 Reading A Line Of Text
gets() and puts() are two string functions to take string input

from user and display string respectively
int main()
{
char name[30];
printf("Enter name: ");
gets(name); //Function to read string from user.
printf("Name: ");
puts(name); //Function to display string.
return 0;
}
Note: Though, gets() and puts() function handle strings,

both these functions are defined in "stdio.h" header
file.

SUPPRESSING INPUT

⚫ scanf() can be used to read a field without assigning it
to any variable. This is done by preceding that field's
format code with a

 For example, given:
 scanf("%d*c%d", &hr, &min);
⚫ The time can be read as 9:05 as a pair.
⚫ Here the colon would be read but not assigned to

anything.

⚫ Using a Scanset
⚫ The ANSI standard added the new scanset feature to the C language.
⚫ A scanset is used to define a set of characters which may be read and

assigned to the corresponding string.
⚫ A scanset is defined by placing the characters inside square brackets

prefixed with a %
intmain()
{
charstr[10];
printf("\nEnter string:");
scanf("%[aeiou]",str);
printf("The string is : %s",str);
Return 0;
}
⚫ The code will stop accepting character as soon as the user will enter a

character that is not a vowel.
⚫ However, if the first character in the set is a ^ (caret symbol), then scanf()

will accept any character that is not defined by the scanset.
⚫ For example, if you write
scanf("%[^aeiou]",str);

3.String operations
 (without using built–in string functions)
⚫In this section, we will learn about different operations

that can be performed on strings without using built in
functions which includes :

i) Length vi) Substring
ii) Compare vii) Insertion
iii) Concatenate viii) Indexing
iv) Copy ix) Deletion
v) Reverse x) Replacement

i) Length - Finding Length of a String

⚫ The number of characters in the string constitutes the length of the string.
⚫ For example, LENGTH(“C PROGRAMMING IS FUN”) will return 20.
⚫ LENGTH(‘0’) = 0 and LENGTH(‘’) = 0 because both the strings does not

contain any character.
Algorithm to calculate the length of a string

I is used as an index for traversing string STR.
 To traverse each and every character of STR, we increment the value of I.
 Once we encounter the null character, the control jumps out of the while loop

and the length is initialized with the value of I.

Write a program to find the length of a string.

#include <stdio.h>
#include <conio.h>
int main()
{
char str[100], i= 0, length=0;
printf("\n Enter the string : ");
gets(str);
/*while(str[i] != '\0') // using while loop
i++;
length = i;*/
for (i=0;str[i]!='\0';i++)
length = length+1;
printf("\n The length of the string is : %d", length); OUTPUT
return 0;
}

ii) Compare
⚫ If S1 and S2 are two strings, then comparing the two strings will give either of the

following results:
S1 and S2 are equal
S1>S2, when in dictionary order, S1 will come after S2
S1<S2, when in dictionary order, S1 precedes S2

⚫ To compare the two strings, each and every character is compared from both the
strings.

⚫ If all the characters are the same, then the two strings are said to be equal.

⚫ In this algorithm, we first check whether the two strings are of the same length.
If not, then there is no point in moving ahead, as it straight away means that the
two strings are not the same.

⚫ However, if the two strings are of the same length, then we compare character by
character to check if all the characters are same.

⚫ If yes, then the variable SAME is set to 1. Else, if SAME = 0, then we check which
string precedes the other in the dictionary order and print the corresponding
message.

Algorithm

Write a program to compare two strings
#include <stdio.h>
 #include <conio.h>
#include <string.h>
 intmain()
{
char str1[50], str2[50];
int i=0, len1=0, len2=0, same=0;
 clrscr();
printf("\n Enter the first string : ");
 gets(str1);
printf("\n Enter the second string :);
gets(str2);
len1 = strlen(str1);
len2 = strlen(str2);
if(len1 == len2)
{
while(i<len1)
{
 if(str1[i] == str2[i])
 i++;

else
break;
}
if(i==len1)
{
same=1;
printf("\n The two strings are equal");
}}
 if(len1!=len2)
printf("\n The two strings are not equal");
 if(same == 0){
if(str1[i]>str2[i])
printf("\n String 1 is greater than string 2");
else if(str1[i]<str2[i])
printf("\n String 2 is greater than string 1");
}
getch();
return 0;
}

OUTPUT:
Enter the first string : Hello
Enter the second string : Hello
The two strings are equal

iii) Concatenate

⚫ CONCATENATING TWO STRINGS TO FORM A NEW STRING
⚫ IF S1 and S2 are two strings, then concatenation operation produces a string

which contains characters of S1 followed by the characters of S2.

PROGRAM:
#include <stdio.h>
intmain()
{
inti,j=0,len=0;
char str1[100], str2[100];
printf("\nEnterthe string1 : ");
gets(str1);
printf("Enter the string2 : ");
gets(str2);
for (i=0;str1[i]!='\0';i++)
len=len+1; // length of the first string
j=len;
for (i=0;str2[i]!='\0';i++){
str1[j]=str2[i]; // 2nd string copied to 1st string //from jthposition
j=j+1;}
str1[j]='\0';
printf("The concatenated string is %s",str1);
}

OUTPUT

⚫ concatenate or append have same implementation in C
⚫ Appending one string to another string involves copying the contents

of the source string at the end of the destination string.

⚫ algorithm that appends two strings

Write a program to append a string to another string.
#include <stdio.h>
#include <conio.h>
int main()
{
char Dest_Str[100], Source_Str[50];
inti=0, j=0;
printf("\n Enter the source string : ");
gets(Source_Str);
printf("\n Enter the destination string : ");
gets(Dest_Str);
while(Dest_Str[i] != '\0')
i++;
while(Source_Str[j] != '\0')
{ Dest_Str[i] = Source_Str[j];
 i++;
 j++;
}
Dest_Str[i] = '\0';
printf("\n After appending, the destination string is : "); puts(Dest_Str);
return 0;
}

OUTPUT
Enter the source string : How are you?
Enter the destination string : Hello,
After appending, the destination string is :
Hello,How are you?

iv) Copy
⚫ Copying the contents of one string to another string.

#include <stdio.h>
int main()
{
int i;
char str1[100], str2[100];
printf("\n Enter the string1 : ");
gets(str1);
for (i=0;str1[i]!='\0';i++)
str2[i]=str1[i];
str2[i]='\0';
printf("The copied string is %s",str2);
return 0;
}

OUTPUT

v) Reverse
⚫ If S1 = "HELLO", then reverse of S1 = "OLLEH".
⚫ To reverse a string, we just need to swap the first character with the

last, second character with the second last character, and so on.

Algorithm

Write a program to reverse a given string.

#include <stdio.h>
intmain()
{
int i, j=0,len=0;
char str1[100], rev[100];
printf("\nEnterthe string1 : ");
gets(str1);
for (i=0;str1[i]!='\0';i++)
len=len+1;
for (i=len-1;i>=0;i--)
{
rev[j]=str1[i];
j=j+1;
}
rev[j]='\0';
printf("The reversed string is %s",rev);
return 0;
}

OUTPUT

vi) Substring

To extract a substring from a given string, we need the following
three parameters:
⚫the main string,
⚫the position of the first character of the substring in the given

string, and
⚫the maximum number of characters/length of the substring.

For example, if we have a string
⚫str[] = "Welcome to the world of programming";
⚫Then, SUBSTRING(str, 15, 5) = world

Algorithm
⚫ we initialize a loop counter I to M, that is, the position from which the

characters have to be copied.
⚫ Steps 3 to 6 are repeated until N characters have been copied.
⚫ With every character copied, we decrement the value of N.
⚫ The characters of the string are copied into another string called the

SUBSTR.
⚫ At the end, a null character is appended to SUBSTR to terminate the

string.

Write a program to extract a substring from the middle of a given string.
#include <stdio.h>
#include <conio.h>
intmain()
{
char str[100], substr[100];
inti=0, j=0, n, m;
printf("\n Enter the main string : ");
gets(str);
printf("\n Enter the position from which to start the substring: ");
scanf("%d", &m);
printf("\n Enter the length of the substring: ");
scanf("%d", &n);
i=m;
while(str[i] != '\0' && n>0)
{
substr[j] = str[i];
i++; j++; n--;
}
substr[j] = '\0';
printf("\n The substring is : "); puts(substr);
return 0;
}

OUTPUT

Enter the main string : Hi there
Enter the position from which to start the
substring: 1
Enter the length of the substring: 4
The substring is : i th

vii) Indexing –program

Pattern Matching

⚫ This operation returns the position in the string where the
string pattern first occurs.

For example,

⚫ INDEX("Welcome to the world of programming", "world") = 15
⚫ However, if the pattern does not exist in the string,
 the INDEX function returns 0.

⚫ MAX is initialized to length(TEXT) –Length(STR) + 1.
⚫ For example, if a text contains 'Welcome To Programming' and the string

contains 'World', in the main text, we will look for at the most 22 –5 + 1 = 18
characters because after that there is no scope left for the string to be present in
the text.

⚫ Steps 3 to 6 are repeated until each and every character of the text has been
checked for the occurrence of the string within it. In the inner loop in Step 3,
we check the n characters of string with the n characters of text to find if the
characters are same.

⚫ If it is not the case, then we move to Step 6, where I is incremented. If the
string is found, then the index is initialized with I, else it is set to –1.

⚫ For example, if TEXT = WELCOME TO THE WORLD
⚫ STRING = COME
⚫ In the first pass of the inner loop, we will compare COME with WELC character

by character. As W and C do not match, the control will move to Step 6 and
then ELCO will be compared with COME. In the fourth pass, COME will be
compared with COME.

⚫ We will be using the programming code of pattern matching operation in the
operations that follow.

viii) Insertion
⚫ The insertion operation inserts a string S in the main text T at the

kth position.
⚫ The general syntax of this operation is INSERT(text, position, string).
⚫ For example, INSERT("XYZXYZ", 3, "AAA") = "XYZAAAXYZ“
⚫ Algorithm

• first initializes the indices into the
string to zero.

• From Steps 3 to 5, the contents of
NEW_STR are built.

• If I is exactly equal to the position
at which the substring has to be
inserted, then the inner loop copies
the contents of the substring into
NEW_STR.

• Otherwise, the contents of the text
are copied into it.

#include <stdio.h>
intmain() {
char text[100], str[20], ins_text[100];
inti=0, j=0, k=0,pos;
printf("\n Enter the main text : ");
gets(text);
printf("\n Enter the string to be inserted : ");
gets(str);
printf("\n Enter the place at which the string has to
be inserted: ");
scanf("%d", &pos);
while(text[i] != '\0‘)
{
if(i==pos){
while(str[k] != '\0‘){
ins_text[j] = str[k];
j++;
k++;
}}

else
{
ins_text[j] = text[i];
j++;
}
i++;
}
ins_text[j] = '\0';
printf("\n The new string is : ");
puts(ins_text);
return 0;
}

Write a program to insert a string in the main text

OUTPUT

Enter the main text : newsman
Enter the string to be inserted : paper
Enter the place at which the string has to be
inserted: 4
The new string is: newspaperman

ix) Deletion
Deleting a Substring from the Main String
 The deletion operation deletes a substring from a given text.
 We can write it as DELETE(text, position, length)
 For example, DELETE("ABCDXXXABCD", 4, 3) = "ABCDABCD”
Algorithm:

• we first initialize the indices to zero.
• Steps 3 to 6 are repeated until all the

characters of the text are scanned.
• If I is exactly equal to M (the position from

which deletion has to be done), then the
index of the text is incremented and N is
decremented.

• N is the number of characters that have to
be deleted starting from position M.

• However, if I is not equal to M, then the
characters of the text are simply copied into
the NEW_STR.

#include <stdio.h>
intmain() {
char text[200], str[20], new_text[200];
int i=0, j=0, found=0, k, n=0, copy_loop=0;
printf("\n Enter the main text : ");
gets(text);
printf("\n Enter the string to be deleted : ");
gets(str);
while(text[i]!='\0‘){
j=0, found=0, k=i;
while(text[k]==str[j] && str[j]!='\0')
{
k++;
j++;
}

if(str[j]=='\0')
copy_loop=k;
new_text[n] = text[copy_loop];
i++;
copy_loop++;
n++;
}
new_text[n]='\0';
printf("\n The new string is : ");
puts(new_text);
getch();
return 0;}
}

Write a program to delete a substring from a text.

x) Replacement
Replacing a Pattern with Another Pattern in a String

 The replacement operation is used to replace the pattern P1 by another
pattern P2 .

 This is done by writing REPLACE(text, pattern , pattern).
For example,
 ("AAABBBCCC", "BBB", "X") = AAAXCCC

 ("AAABBBCCC", "X", "YYY")= AAABBBCC

 In the second example, there is no change as X does not appear in the text.

⚫ The algorithm is very simple, where
⚫ we first find the position POS, at which the pattern occurs in the text,

then delete the existing pattern from that position and
⚫ insert a new pattern there.

#include <stdio.h>
intmain() {
char str[200], pat[20], new_str[200], rep_pat[100];
inti=0, j=0, k, n=0, copy_loop=0, rep_index=0;
printf("\n Enter the string : ");
gets(str);
printf("\n Enter the pattern to be replaced: ");
gets(pat);
printf("\n Enter the replacing pattern: ");
gets(rep_pat);
while(str[i]!='\0'){
j=0,k=i;
while(str[k]==pat[j] && pat[j]!='\0'){
k++;
j++;}
if(pat[j]=='\0'){
copy_loop=k;
while(rep_pat[rep_index] !='\0'){
new_str[n] = rep_pat[rep_index];
rep_index++;
n++;
}}

new_str[n] = str[copy_loop];
i++;
copy_loop++;
n++;}
new_str[n]='\0';
printf("\n The new string is : ");
puts(new_str);
return 0;
}

Write a program to replace a pattern with another pattern in the text.

OUTPUT

String operations
 (using built-in string functions)

⚫In this section, we will learn about different operations that
can be performed on strings using built in functions.

⚫C provides string manipulating functions in the
"string.h" library.

⚫String in C – Library Functions

Length –reverse –upper case & lower case

Length of the string
⚫The number of characters in the string constitutes the length of the string.

 For example, LENGTH("C PROGRAMMING IS FUN") will return 20.

⚫Note that even blank spaces are counted as characters in the string. LENGTH(‘0’)
= 0 and LENGTH(‘’) = 0 because both the strings does not contain any character.

⚫strlen() function in C gives the length of the given string.
⚫Syntax

 size_t strlen(const char * str);
⚫strlen() function counts the number of characters in a given string and returns the

integer value.
⚫Its tops counting the character when null character is found. Because, null

character indicates the end of the string in C.

Reversing a String

⚫ If S1 = "HELLO", then reverse of S1 = "OLLEH".
⚫To reverse a string, we just need to swap the first character with the last,

second character with the second last character, and so on.
⚫strrev() function reverses a given string in C language.

 Syntax
 char *strrev(char*string);

⚫strrev() function is non-standard function which may not available in
standard library inC.

Upper Case of a String
 strupr() function converts a given string into uppercase.
 Syntax
 char *strupr(char*string);
strupr() function is non-standard function which may not available in
standard library in C.

Lower Case of a String
 strlwr() function converts a given string into lowercase.
 Syntax
 char *strlwr(char*string);

strlwr() function is non-standard function which may not available in
standard library in C.

Example: C program to illustrate

strlen(), strupr() , strlwr() , strrev()

#include<stdio.h>
#include<string.h> //c header file for string library functions
void main(){
char str1[10]="DeNnis" , str2[10]="RitChiE";
int len;
len=strlen(str1);
//strupr(str1);
//strlwr(str2);
printf("\n Length of string is %d", len);
//printf("\n upper case is %s" , str1);
//printf("\n lower case is %s" ,str2);
strrev(str1);
printf("\n Reverse of string is %s", str1);
}
OUTPUT:
Length of string is 6
Reverse of string is sinNeD

4.ARRAY OF STRINGS

⚫ Algorithm
⚫ In Step 1, we initialize the index variable I to zero.
⚫ In Step 2, a while loop is executed until all the strings in

the array are accessed.
⚫ In Step 3, each individual string is processed.

WRITE A PROGRAM TO READ AND PRINT THE NAMES OF N STUDENTS OF A CLASS
#include<stdio.h>
#include<conio.h>
main()
{
char names[5][10];
inti, n;
clrscr();

printf(“\n Enter the number of students : “);
scanf(“%d”, &n);
for(i=0;i<n;i++)
{
printf(“\n Enter the name of %dthstudent : “, i+1);
gets(names[i]);
}
printf(“\n Names of the students are : \n”);
for(i=0;i<n;i++)
puts(names[i]);
getch();
return 0;
}

